Johnson, S. S., Anslyn, E. V., Graham, H. V., Mahaffy, P. R. & Ellington, A. D. Fingerprinting non-terran biosignatures. Astrobiology 18, 915–922 (2018).
Marshall, S. M., Murray, A. R. G. & Cronin, L. A probabilistic framework for figuring out biosignatures the use of Pathway Complexity. Philos. Trans. R. Soc. Lond. A 375, 20160342 (2017).
Chan, M. A. et al. Decoding biosignatures in planetary contexts. Astrobiology 19, 1075–1102 (2019).
Neveu, M., Hays, L. E., Voytek, M. A., New, M. H. & Schulte, M. D. The ladder of lifestyles detection. Astrobiology 18, 1375–1402 (2018).
Lukmanov, R. A. et al. On topological research of fs-LIMS knowledge. Implications for in situ planetary mass spectrometry. Entrance. Artif. Intell. https://doi.org/10.3389/frai.2021.668163 (2021).
Johnston, S., Gehrels, G., Valencia, V. & Ruiz, J. Small-volume U–Pb zircon geochronology by way of laser ablation-multicollector-ICP-MS. Chem. Geol. 259, 218–229 (2009).
Sagdeev, R. Z. & Zakharov, A. V. Temporary historical past of the Phobos challenge. Nature 341, 581–585 (1989).
Managadze, G. G. et al. Find out about of the principle geochemical traits of Phobos’ regolith the use of laser time-of-flight mass spectrometry. Sol. Syst. Res. 44, 376–384 (2010).
Goesmann, F. et al. The Mars Natural Molecule Analyzer (MOMA) device: characterization of natural subject material in Martian sediments. Astrobiology 17, 655–685 (2017).
Grubisic, A. et al. Laser desorption mass spectrometry at Saturn’s moon Titan. Int. J. Mass Spectrom. 470, 116707 (2021).
Chumikov, A. E., Cheptsov, V. S., Managadze, N. G. & Managadze, G. G. LASMA-LR laser-ionization mass spectrometer onboard Luna-25 and Luna-27 missions. Sol. Syst. Res. 55, 550–561 (2021).
Briois, C. et al. Orbitrap mass analyser for in situ characterisation of planetary environments: functionality analysis of a laboratory prototype. Planet. Area Sci. 131, 33–45 (2016).
Willhite, L. et al. CORALS: a laser desorption/ablation Orbitrap mass spectrometer for in situ exploration of Europa. In 2021 IEEE Aerospace Convention 50100, 1–13 (2021).
Makarov, A. A. Mass spectrometer US patent 5,886,346 (1999).
Arevalo, R. Jr, Ni, Z. & Danell, R. M. Mass spectrometry and planetary exploration: a temporary evaluation and long term projection. J. Mass Spectrom. 55, e4454 (2020).
Makarov, A. Electrostatic axially harmonic orbital trapping: a high-performance method of mass research. Anal. Chem. 72, 1156–1162 (2000).
Arevalo, R. Jr et al. An Orbitrap-based laser desorption/ablation mass spectrometer designed for spaceflight. Fast Commun. Mass Spectrom. https://doi.org/10.1002/rcm.8244 (2018).
Yu, A. W. et al. The Lunar Orbiter Laser Altimeter (LOLA) laser transmitter. In 2011 IEEE World Geoscience and Far flung Sensing Symposium 3378–3379 (2011).
Malloci, G., Mulas, G. & Joblin, C. Digital absorption spectra of PAHs as much as vacuum UV. Astron. Astrophys. 426, 105–117 (2004).
Cloutis, E. A. et al. Ultraviolet spectral reflectance houses of commonplace planetary minerals. Icarus 197, 321–347 (2008).
Fahey, M. et al. Ultraviolet laser construction for planetary lander missions. In 2020 IEEE Aerospace Convention 1–11 (2020).
Büttner, A. et al. Optical design and characterization of the MOMA laser head flight fashion for the ExoMars 2020 challenge. In Proc. SPIE 11180, World Convention on Area Optics—ICSO 2018, 111805H (12 July 2019); https://doi.org/10.1117/12.2536116
Jenner, F. E. & O’Neill, H. S. C. Primary and hint research of basaltic glasses by way of laser-ablation ICP-MS. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2011GC003890 (2012).
Humayun, M., Davis, F. A. & Hirschmann, M. M. Primary component research of herbal silicates by way of laser ablation ICP-MS. J. Anal. Spectrom. 25, 998–1005 (2010).
Longerich, H. P., Günther, D. & Jackson, S. E. Elemental fractionation in laser ablation inductively coupled plasma mass spectrometry. Fresenius J. Anal. Chem. 355, 538–542 (1996).
Alterman, M. A., Gogichayeva, N. V. & Kornilayev, B. A. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry-based amino acid research. Anal. Biochem. 335, 184–191 (2004).
Sarracino, D. & Richert, C. Quantitative MALDI-TOF MS of oligonucleotides and a nuclease assay. Bioorg. Med. Chem. Lett. 6, 2543–2548 (1996).
Chumbley, C. W. et al. Absolute quantitative MALDI imaging mass spectrometry: a case of rifampicin in liver tissues. Anal. Chem. 88, 2392–2398 (2016).
Zubarev, R. A. & Makarov, A. Orbitrap mass spectrometry. Anal. Chem. 85, 5288–5296 (2013).
Makarov, A., Denisov, E., Lange, O. & Horning, S. Dynamic vary of mass accuracy in LTQ Orbitrap hybrid mass spectrometer. J. Am. Soc. Mass Spectrom. 17, 977–982 (2006).
Hoegg, E. D. et al. Isotope ratio traits and sensitivity for uranium determinations the use of a liquid sampling–atmospheric force glow discharge ion supply coupled to an Orbitrap mass analyzer. J. Anal. Spectrom. 31, 2355–2362 (2016).
Hofmann, A. E. et al. The use of Orbitrap mass spectrometry to evaluate the isotopic compositions of particular person compounds in combos. Int. J. Mass Spectrom. 457, 116410 (2020).
Hardouin, J. Protein collection data by way of matrix-assisted laser desorption/ionization in-source decay mass spectrometry. Mass Spectrom. Rev. 26, 672–682 (2007).
Franchi, M., Ferris, J. P. & Gallori, E. Cations as mediators of the adsorption of nucleic acids on clay surfaces in prebiotic environments. Orig. Existence Evol. Biosph. 33, 1–16 (2003); https://doi.org/10.1023/A:1023982008714
Trumbo, S. Okay., Brown, M. E. & Hand, Okay. P. Sodium chloride at the floor of Europa. Sci. Adv. 5, eaaw7123 (2019).
Postberg, F., Schmidt, J., Hillier, J. et al. A salt-water reservoir because the supply of a compositionally stratified plume on Enceladus. Nature 474, 620–622 (2011).
De Sanctis, M. C. et al. Contemporary emplacement of hydrated sodium chloride on Ceres from ascending salty fluids. Nat. Astron. 4, 786–793 (2020).
Hand, Okay. P. et al. Document of the Europa Lander Science Definition Staff (NASA, 2017).
Hendrix, A. R. et al. The NASA Roadmap to Ocean Worlds. Astrobiology 19, 1–27 (2018); https://doi.org/10.1089/ast.2018.1955
MacKenzie, S. M. et al. The Enceladus Orbilander challenge thought: balancing go back and assets within the seek for lifestyles. Planet. Sci. J. 2, 77 (2021).
Waite, J. H. Jr et al. Liquid water on Enceladus from observations of ammonia and 40Ar within the plume. Nature 460, 487–490 (2009).
Altwegg, Okay., Balsiger, H. & Fuselier, S. A. Cometary chemistry and the foundation of icy sun machine our bodies: the view after Rosetta. Annu. Rev. Astron. Astrophys. 57, 113–155 (2019).
Guzman, M. et al. Gathering amino acids within the Enceladus plume. Int. J. Astrobiol. 18, 47–59 (2018).
Takayama, M. In-source decay traits of peptides in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J. Am. Soc. Mass Spectrom. 12, 420–427 (2001).
Katta, V., Chow, D. T. & Rohde, M. F. Packages of in-source fragmentation of protein ions for direct collection research by way of behind schedule extraction MALDI-TOF mass spectrometry. Anal. Chem. 70, 4410–4416 (1998).
Sanders, J. D. et al. Choice of collision cross-sections of protein ions in an Orbitrap mass analyzer. Anal. Chem. 90, 5896–5902 (2018).
Makarov, A. & Denisov, E. Dynamics of ions of intact proteins within the Orbitrap mass analyzer. J. Am. Soc. Mass Spectrom. 20, 1486–1495 (2009).
Anupriya, Jones, C. A. & Dearden, D. V. Collision pass sections for 20 protonated amino acids: Fourier become ion cyclotron resonance and ion mobility effects. J. Am. Soc. Mass Spectrom. 27, 1366–1375 (2016).
Chyba, C. & Sagan, C. Endogenous manufacturing, exogenous supply and impact-shock synthesis of natural molecules: a listing for the origins of lifestyles. Nature 355, 125–132 (1992).
Poppe, A. R. An progressed fashion for interplanetary mud fluxes within the outer Sun Gadget. Icarus 264, 369–386 (2016).
Taylor, S. R. & McLennan, S. M. in Manual at the Physics and Chemistry of Uncommon Earths Vol. 11, 485–578 (eds Gschneidner, Okay. A. J. & Eyring, l.) (Elsevier, 1988).
Jawin, E. R. et al. Lunar science for landed missions workshop findings file. Earth Area Sci. 6, 2–40 (2019).
Nationwide Academies of Sciences, Engineering, and Drugs. Origins, Worlds, and Existence: A Decadal Technique for Planetary Science and Astrobiology 2023–2032 (Nationwide Academies Press, 2022).
Artemis III Science Definition Staff Document (NASA, 2020).
Steinbrügge, G. et al. Brine migration and impact-induced cryovolcanism on Europa. Geophys. Res. Lett. 47, e2020GL090797 (2020).
Danell, R. et al. A complete featured, versatile, and reasonably priced 2D and three-D ion entice keep an eye on structure and device bundle. In Proc. 58th ASMS Convention on Mass Spectrometry and Allied Subjects 283889 (2010).