Laser desorption mass spectrometry with an Orbitrap analyser for in situ astrobiology

  • Johnson, S. S., Anslyn, E. V., Graham, H. V., Mahaffy, P. R. & Ellington, A. D. Fingerprinting non-terran biosignatures. Astrobiology 18, 915–922 (2018).

    Article 
    ADS 

    Google Student
     

  • Marshall, S. M., Murray, A. R. G. & Cronin, L. A probabilistic framework for figuring out biosignatures the use of Pathway Complexity. Philos. Trans. R. Soc. Lond. A 375, 20160342 (2017).

    ADS 

    Google Student
     

  • Chan, M. A. et al. Decoding biosignatures in planetary contexts. Astrobiology 19, 1075–1102 (2019).

    Article 
    ADS 

    Google Student
     

  • Neveu, M., Hays, L. E., Voytek, M. A., New, M. H. & Schulte, M. D. The ladder of lifestyles detection. Astrobiology 18, 1375–1402 (2018).

    Article 
    ADS 

    Google Student
     

  • Lukmanov, R. A. et al. On topological research of fs-LIMS knowledge. Implications for in situ planetary mass spectrometry. Entrance. Artif. Intell. https://doi.org/10.3389/frai.2021.668163 (2021).

  • Johnston, S., Gehrels, G., Valencia, V. & Ruiz, J. Small-volume U–Pb zircon geochronology by way of laser ablation-multicollector-ICP-MS. Chem. Geol. 259, 218–229 (2009).

    Article 
    ADS 

    Google Student
     

  • Sagdeev, R. Z. & Zakharov, A. V. Temporary historical past of the Phobos challenge. Nature 341, 581–585 (1989).

    Article 
    ADS 

    Google Student
     

  • Managadze, G. G. et al. Find out about of the principle geochemical traits of Phobos’ regolith the use of laser time-of-flight mass spectrometry. Sol. Syst. Res. 44, 376–384 (2010).

    Article 
    ADS 

    Google Student
     

  • Goesmann, F. et al. The Mars Natural Molecule Analyzer (MOMA) device: characterization of natural subject material in Martian sediments. Astrobiology 17, 655–685 (2017).

    Article 
    ADS 

    Google Student
     

  • Grubisic, A. et al. Laser desorption mass spectrometry at Saturn’s moon Titan. Int. J. Mass Spectrom. 470, 116707 (2021).

    Article 

    Google Student
     

  • Chumikov, A. E., Cheptsov, V. S., Managadze, N. G. & Managadze, G. G. LASMA-LR laser-ionization mass spectrometer onboard Luna-25 and Luna-27 missions. Sol. Syst. Res. 55, 550–561 (2021).

    Article 
    ADS 

    Google Student
     

  • Briois, C. et al. Orbitrap mass analyser for in situ characterisation of planetary environments: functionality analysis of a laboratory prototype. Planet. Area Sci. 131, 33–45 (2016).

    Article 
    ADS 

    Google Student
     

  • Willhite, L. et al. CORALS: a laser desorption/ablation Orbitrap mass spectrometer for in situ exploration of Europa. In 2021 IEEE Aerospace Convention 50100, 1–13 (2021).

  • Makarov, A. A. Mass spectrometer US patent 5,886,346 (1999).

  • Arevalo, R. Jr, Ni, Z. & Danell, R. M. Mass spectrometry and planetary exploration: a temporary evaluation and long term projection. J. Mass Spectrom. 55, e4454 (2020).

    Article 
    ADS 

    Google Student
     

  • Makarov, A. Electrostatic axially harmonic orbital trapping: a high-performance method of mass research. Anal. Chem. 72, 1156–1162 (2000).

    Article 

    Google Student
     

  • Arevalo, R. Jr et al. An Orbitrap-based laser desorption/ablation mass spectrometer designed for spaceflight. Fast Commun. Mass Spectrom. https://doi.org/10.1002/rcm.8244 (2018).

    Article 

    Google Student
     

  • Yu, A. W. et al. The Lunar Orbiter Laser Altimeter (LOLA) laser transmitter. In 2011 IEEE World Geoscience and Far flung Sensing Symposium 3378–3379 (2011).

  • Malloci, G., Mulas, G. & Joblin, C. Digital absorption spectra of PAHs as much as vacuum UV. Astron. Astrophys. 426, 105–117 (2004).

    Article 
    ADS 

    Google Student
     

  • Cloutis, E. A. et al. Ultraviolet spectral reflectance houses of commonplace planetary minerals. Icarus 197, 321–347 (2008).

    Article 
    ADS 

    Google Student
     

  • Fahey, M. et al. Ultraviolet laser construction for planetary lander missions. In 2020 IEEE Aerospace Convention 1–11 (2020).

  • Büttner, A. et al. Optical design and characterization of the MOMA laser head flight fashion for the ExoMars 2020 challenge. In Proc. SPIE 11180, World Convention on Area Optics—ICSO 2018, 111805H (12 July 2019); https://doi.org/10.1117/12.2536116

  • Jenner, F. E. & O’Neill, H. S. C. Primary and hint research of basaltic glasses by way of laser-ablation ICP-MS. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2011GC003890 (2012).

  • Humayun, M., Davis, F. A. & Hirschmann, M. M. Primary component research of herbal silicates by way of laser ablation ICP-MS. J. Anal. Spectrom. 25, 998–1005 (2010).

    Article 

    Google Student
     

  • Longerich, H. P., Günther, D. & Jackson, S. E. Elemental fractionation in laser ablation inductively coupled plasma mass spectrometry. Fresenius J. Anal. Chem. 355, 538–542 (1996).

    Article 

    Google Student
     

  • Alterman, M. A., Gogichayeva, N. V. & Kornilayev, B. A. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry-based amino acid research. Anal. Biochem. 335, 184–191 (2004).

    Article 

    Google Student
     

  • Sarracino, D. & Richert, C. Quantitative MALDI-TOF MS of oligonucleotides and a nuclease assay. Bioorg. Med. Chem. Lett. 6, 2543–2548 (1996).

    Article 

    Google Student
     

  • Chumbley, C. W. et al. Absolute quantitative MALDI imaging mass spectrometry: a case of rifampicin in liver tissues. Anal. Chem. 88, 2392–2398 (2016).

    Article 

    Google Student
     

  • Zubarev, R. A. & Makarov, A. Orbitrap mass spectrometry. Anal. Chem. 85, 5288–5296 (2013).

    Article 

    Google Student
     

  • Makarov, A., Denisov, E., Lange, O. & Horning, S. Dynamic vary of mass accuracy in LTQ Orbitrap hybrid mass spectrometer. J. Am. Soc. Mass Spectrom. 17, 977–982 (2006).

  • Hoegg, E. D. et al. Isotope ratio traits and sensitivity for uranium determinations the use of a liquid sampling–atmospheric force glow discharge ion supply coupled to an Orbitrap mass analyzer. J. Anal. Spectrom. 31, 2355–2362 (2016).

    Article 

    Google Student
     

  • Hofmann, A. E. et al. The use of Orbitrap mass spectrometry to evaluate the isotopic compositions of particular person compounds in combos. Int. J. Mass Spectrom. 457, 116410 (2020).

    Article 

    Google Student
     

  • Hardouin, J. Protein collection data by way of matrix-assisted laser desorption/ionization in-source decay mass spectrometry. Mass Spectrom. Rev. 26, 672–682 (2007).

    Article 
    ADS 

    Google Student
     

  • Franchi, M., Ferris, J. P. & Gallori, E. Cations as mediators of the adsorption of nucleic acids on clay surfaces in prebiotic environments. Orig. Existence Evol. Biosph. 33, 1–16 (2003); https://doi.org/10.1023/A:1023982008714

  • Trumbo, S. Okay., Brown, M. E. & Hand, Okay. P. Sodium chloride at the floor of Europa. Sci. Adv. 5, eaaw7123 (2019).

    Article 
    ADS 

    Google Student
     

  • Postberg, F., Schmidt, J., Hillier, J. et al. A salt-water reservoir because the supply of a compositionally stratified plume on Enceladus. Nature 474, 620–622 (2011).

  • De Sanctis, M. C. et al. Contemporary emplacement of hydrated sodium chloride on Ceres from ascending salty fluids. Nat. Astron. 4, 786–793 (2020).

    Article 
    ADS 

    Google Student
     

  • Hand, Okay. P. et al. Document of the Europa Lander Science Definition Staff (NASA, 2017).

  • Hendrix, A. R. et al. The NASA Roadmap to Ocean Worlds. Astrobiology 19, 1–27 (2018); https://doi.org/10.1089/ast.2018.1955

  • MacKenzie, S. M. et al. The Enceladus Orbilander challenge thought: balancing go back and assets within the seek for lifestyles. Planet. Sci. J. 2, 77 (2021).

    Article 

    Google Student
     

  • Waite, J. H. Jr et al. Liquid water on Enceladus from observations of ammonia and 40Ar within the plume. Nature 460, 487–490 (2009).

    Article 
    ADS 

    Google Student
     

  • Altwegg, Okay., Balsiger, H. & Fuselier, S. A. Cometary chemistry and the foundation of icy sun machine our bodies: the view after Rosetta. Annu. Rev. Astron. Astrophys. 57, 113–155 (2019).

    Article 
    ADS 

    Google Student
     

  • Guzman, M. et al. Gathering amino acids within the Enceladus plume. Int. J. Astrobiol. 18, 47–59 (2018).

    Article 
    ADS 

    Google Student
     

  • Takayama, M. In-source decay traits of peptides in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J. Am. Soc. Mass Spectrom. 12, 420–427 (2001).

    Article 
    ADS 

    Google Student
     

  • Katta, V., Chow, D. T. & Rohde, M. F. Packages of in-source fragmentation of protein ions for direct collection research by way of behind schedule extraction MALDI-TOF mass spectrometry. Anal. Chem. 70, 4410–4416 (1998).

    Article 

    Google Student
     

  • Sanders, J. D. et al. Choice of collision cross-sections of protein ions in an Orbitrap mass analyzer. Anal. Chem. 90, 5896–5902 (2018).

    Article 

    Google Student
     

  • Makarov, A. & Denisov, E. Dynamics of ions of intact proteins within the Orbitrap mass analyzer. J. Am. Soc. Mass Spectrom. 20, 1486–1495 (2009).

    Article 

    Google Student
     

  • Anupriya, Jones, C. A. & Dearden, D. V. Collision pass sections for 20 protonated amino acids: Fourier become ion cyclotron resonance and ion mobility effects. J. Am. Soc. Mass Spectrom. 27, 1366–1375 (2016).

    Article 
    ADS 

    Google Student
     

  • Chyba, C. & Sagan, C. Endogenous manufacturing, exogenous supply and impact-shock synthesis of natural molecules: a listing for the origins of lifestyles. Nature 355, 125–132 (1992).

    Article 
    ADS 

    Google Student
     

  • Poppe, A. R. An progressed fashion for interplanetary mud fluxes within the outer Sun Gadget. Icarus 264, 369–386 (2016).

    Article 
    ADS 

    Google Student
     

  • Taylor, S. R. & McLennan, S. M. in Manual at the Physics and Chemistry of Uncommon Earths Vol. 11, 485–578 (eds Gschneidner, Okay. A. J. & Eyring, l.) (Elsevier, 1988).

  • Jawin, E. R. et al. Lunar science for landed missions workshop findings file. Earth Area Sci. 6, 2–40 (2019).

    Article 
    ADS 

    Google Student
     

  • Nationwide Academies of Sciences, Engineering, and Drugs. Origins, Worlds, and Existence: A Decadal Technique for Planetary Science and Astrobiology 20232032 (Nationwide Academies Press, 2022).

  • Artemis III Science Definition Staff Document (NASA, 2020).

  • Steinbrügge, G. et al. Brine migration and impact-induced cryovolcanism on Europa. Geophys. Res. Lett. 47, e2020GL090797 (2020).

    Article 
    ADS 

    Google Student
     

  • Danell, R. et al. A complete featured, versatile, and reasonably priced 2D and three-D ion entice keep an eye on structure and device bundle. In Proc. 58th ASMS Convention on Mass Spectrometry and Allied Subjects 283889 (2010).

  • Leave a Comment